Longer careers: A barrier to hiring and coworker advancement?

Irene Ferrari ¹ Jan Kabátek ² Todd Morris ³

¹Ca'Foscari University of Venice

²Melbourne Institute, University of Melbourne

³HEC Montréal

September 16, 2022

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond

Ferrari, Kabatek, Morris Longer careers 2/36

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)
 - May "crowd-in" younger workers if complements (Carta et al., 2022)

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)
 - May "crowd-in" younger workers if complements (Carta et al., 2022)
 - Coworkers career progression may stall (Bianchi et al., forth.)

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)
 - May "crowd-in" younger workers if complements (Carta et al., 2022)
 - Coworkers career progression may stall (Bianchi et al., forth.)
- Important to understand these spillovers and responses by firms:

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)
 - May "crowd-in" younger workers if complements (Carta et al., 2022)
 - Coworkers career progression may stall (Bianchi et al., forth.)
- Important to understand these spillovers and responses by firms:
 - Firm-specific matches affect workers' careers (e.g., Abowd et al., 1999)

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)
 - May "crowd-in" younger workers if complements (Carta et al., 2022)
 - Coworkers career progression may stall (Bianchi et al., forth.)
- Important to understand these spillovers and responses by firms:
 - Firm-specific matches affect workers' careers (e.g., Abowd et al., 1999)
 - 2 Labor market shocks persist (e.g., Oreopoulos et al., 2012)

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)
 - May "crowd-in" younger workers if complements (Carta et al., 2022)
 - Coworkers career progression may stall (Bianchi et al., forth.)
- Important to understand these spillovers and responses by firms:
 - Firm-specific matches affect workers' careers (e.g., Abowd et al., 1999)
 - 2 Labor market shocks persist (e.g., Oreopoulos et al., 2012)
 - Overall economic benefits may be smaller than anticipated

Ferrari, Kabatek, Morris Longer careers 2/36

- Many countries are raising pension-eligibility ages and using other incentives to increase employment among older-age groups
- The overall impacts of these policies depend on how firms respond
 - Firms may substitute away from younger workers, if old/young are substitutes (Boeri et al., 2021) or for liquidity reasons (Schoefer, 2021)
 - May "crowd-in" younger workers if complements (Carta et al., 2022)
 - Coworkers career progression may stall (Bianchi et al., forth.)
- Important to understand these spillovers and responses by firms:
 - Firm-specific matches affect workers' careers (e.g., Abowd et al., 1999)
 - 2 Labor market shocks persist (e.g., Oreopoulos et al., 2012)
 - 3 Overall economic benefits may be smaller than anticipated
- Yet there is limited empirical evidence to date

• We study a Dutch reform of the Statutory Retirement Age (SRA)

We study a Dutch reform of the Statutory Retirement Age (SRA)

• We study a Dutch reform of the Statutory Retirement Age (SRA)

- We exploit four SRA increments of 3 or 4 months
 - ullet SRA depends on birthdate \Rightarrow individuals cannot select into treatment
 - SRA increments give exogenous source of variation in retirement timing (unrelated to time-varying firm characteristics)

- We exploit four SRA increments of 3 or 4 months
 - ullet SRA depends on birthdate \Rightarrow individuals cannot select into treatment
 - SRA increments give exogenous source of variation in retirement timing (unrelated to time-varying firm characteristics)

- We exploit four SRA increments of 3 or 4 months
 - ullet SRA depends on birthdate \Rightarrow individuals cannot select into treatment
 - SRA increments give exogenous source of variation in retirement timing (unrelated to time-varying firm characteristics)
- Use monthly linked employer-employee data to identify affected workers and their firms/coworkers

- We exploit four SRA increments of 3 or 4 months
 - ullet SRA depends on birthdate \Rightarrow individuals cannot select into treatment
 - SRA increments give exogenous source of variation in retirement timing (unrelated to time-varying firm characteristics)
- Use monthly linked employer-employee data to identify affected workers and their firms/coworkers
- Implement two new and complementary identification strategies:
 - Event-study model around a focal worker's SRA
 - Hiring rates at their firm increase around the SRA
 - Increase in coworkers' earnings in the SRA month, driven by promotions
 - Stacked DiD model of SRA increases in event time
 - Delay in hiring close to the SRA
 - Delay and decrease in coworkers' earnings/promotions

Ferrari, Kabatek, Morris Longer careers 4/36

Related literature

Emerging literature on career spillovers within firms:

- deaths (Jäger and Heining, 2019; Illing & Schwank, 2022)
- parental leave (Brenoe et al., 2020; Ginja et al., forth.; Gallen, 2019; Johnsen et al., 2020; Schmutte and Skira, 2022; Huebener et al., 2022)
- pension reforms (Boeri et al., 2021; Bianchi et al., forth.; Carta et al., 2021; Eckrote-Nordland, 2021; Hut, 2019)

Related literature

Emerging literature on career spillovers within firms:

- deaths (Jäger and Heining, 2019; Illing & Schwank, 2022)
- parental leave (Brenoe et al., 2020; Ginja et al., forth.; Gallen, 2019; Johnsen et al., 2020; Schmutte and Skira, 2022; Huebener et al., 2022)
- pension reforms (Boeri et al., 2021; Bianchi et al., forth.; Carta et al., 2021; Eckrote-Nordland, 2021; Hut, 2019)

Our contribution: Study a new context with sharp policy variation, better data and a more representative reform

- Data is monthly ⇒ can pinpoint affected months for older workers and estimate effects on firms/coworkers in event time
- Information on work hours ⇒ can study intensive margin responses and changes in hourly wages
- Reform phased in gradually across cohorts and pre announced

Conceptual framework: Set up

- We consider a simple three-period model of firms' labor demand to make predictions about the effects of anticipated retirement delays
- Firm maximizes its combined profits in the three periods
- ullet Output depends on labor inputs: $F_t\left(\overline{H_{t,O}},H_{t,I},H_{t,N}
 ight)$
- Labor market frictions: (i) employment protection for older workers;
 (ii) hiring costs; (iii) adjustment costs; (iv) firing costs
- New hires are young and become incumbents if they stay with firm
- ullet Younger workers stay with the firm with exogenous probability δ
- ullet Firm is a price-taker in input (w_O,w_Y) and output markets (p=1)

Ferrari, Kabatek, Morris Longer careers 6/36

Conceptual framework: Firms' maximization problem

$$\underbrace{ \frac{\max}{H_{1,N}, H_{2,N}, H_{3,N}, i_2, i_3}}_{H_{1,N}, H_{2,N}, H_{3,N}, i_2, i_3} \underbrace{ \underbrace{F_1\left(\overline{H_{1,O}}, \overline{H_{1,I}}, H_{1,N}\right) + F_2\left(\overline{H_{2,O}}, H_{2,I}, H_{2,N}\right) + F_3\left(\overline{H_{3,O}}, H_{3,I}, H_{3,N}\right)}_{\text{revenue}} \\ -\underbrace{\sum_{t=1}^3 \left\{ w_O \overline{H_{t,O}} + w_Y (H_{t,I} + H_{t,N}) \right\} - \underbrace{\sum_{t=1}^3 \left\{ \frac{a_N (H_{t,N})^2}{2} \right\}}_{\text{hiring costs}} \\ -\underbrace{\sum_{t=2}^3 \left\{ \frac{a_I (i_t)^2}{2} \right\} - \underbrace{\sum_{t=2}^3 \left\{ 1 (i_t < 0) T | i_t| \right\}}_{\text{adjustment costs}}$$

subject to:

$$H_{t,N}, H_{t,I} \ge 0$$
 for $t = 1, 2, 3$
$$H_{t,I} = \delta(H_{t-1,I} + H_{t-1,N}) + i_t, \text{ for } t = 2, 3$$

Ferrari, Kabatek, Morris Longer careers 7/36

- At baseline, we assume that many older workers retire in period 1
- We consider the impacts of a pre-announced policy change that causes them to retire in period 2
- Step 1: Derive FOCs for firms' maximization problem See
- ullet Step 2: Take partial derivatives of the FOCs with respect to $\overline{H_{2,O}}$

Hiring (pre shock):
$$\frac{\partial H_{1,N}^*}{\partial \overline{H_{2,O}}} = \left(F_{1,N;2,O}(\cdot) + \delta F_{2,I;2,O}(\cdot) + \delta^2 F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{a_N}\right)$$

$$\text{Hiring (mid shock):} \qquad \frac{\partial H_{2,N}^*}{\partial \overline{H_{2,O}}} = \left(F_{2,N;2,O}(\cdot) + \delta F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{a_N}\right)$$

Hiring (post shock):
$$\frac{\partial H_{3,N}^*}{\partial \overline{H_{2,O}}} = F_{3,l;2,O}(\cdot) \left(\frac{1}{a_N}\right)$$

$$\Delta \text{ incumbents (mid):} \quad \frac{\partial i_2^*}{\partial \overline{H_{2,O}}} = \left(F_{2,l;2,O}(\cdot) + \delta F_{3,l;2,O}(\cdot)\right) \left(\frac{1}{a_l}\right)$$

$$\Delta \text{ incumbents (post):} \quad \frac{\partial i_3^*}{\partial \overline{H_{2,O}}} = F_{3,I;2,O}(\cdot) \left(\frac{1}{a_I}\right)$$

Ferrari, Kabatek, Morris Longer careers

8/36

Hiring (pre shock):
$$\frac{\partial H_{1,N}^*}{\partial \overline{H_{2,O}}} = \left(\underbrace{F_{1,N;2,O}(\cdot)}_{=0} + \delta F_{2,I;2,O}(\cdot) + \delta^2 F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{a_N}\right)$$

$$\text{Hiring (mid shock):} \qquad \frac{\partial H_{2,N}^*}{\partial \overline{H_{2,o}}} = \left(F_{2,N;2,O}(\cdot) + \delta F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{a_N}\right)$$

Hiring (post shock):
$$\frac{\partial H_{3,N}^*}{\partial \overline{H_{2,O}}} = F_{3,l;2,O}(\cdot) \left(\frac{1}{a_N}\right)$$

$$\Delta \text{ incumbents (mid):} \quad \frac{\partial i_2^*}{\partial \overline{H_{2,O}}} = \left(F_{2,l;2,O}(\cdot) + \delta F_{3,l;2,O}(\cdot)\right) \left(\frac{1}{a_l}\right)$$

$$\Delta \text{ incumbents (post):} \quad \frac{\partial i_3^*}{\partial \overline{H_{2,O}}} = F_{3,l;2,O}(\cdot) \left(\frac{1}{a_l}\right)$$

Hiring (pre shock):
$$\frac{\partial H_{1,N}^*}{\partial \overline{H_{2,O}}} = \left(\delta \underbrace{F_{2,l;2,O}(\cdot)}_{\leq 0?} + \delta^2 F_{3,l;2,O}(\cdot)\right) \left(\frac{1}{a_N}\right)$$

$$\text{Hiring (mid shock):} \qquad \frac{\partial H_{2,N}^*}{\partial \overline{H_{2,O}}} = \left(F_{2,N;2,O}(\cdot) + \delta F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{\mathsf{a}_N}\right)$$

Hiring (post shock):
$$\frac{\partial H_{3,N}^*}{\partial \overline{H_{2,O}}} = F_{3,I;2,O}(\cdot) \left(\frac{1}{a_N}\right)$$

$$\Delta \text{ incumbents (mid):} \qquad \frac{\partial i_2^*}{\partial \overline{H_{2,O}}} = \left(\underbrace{\frac{F_{2,l;2,O}(\cdot)}_{<0?}} + \delta F_{3,l;2,O}(\cdot)\right) \left(\frac{1}{a_l}\right)$$

$$\Delta \text{ incumbents (post):} \quad \frac{\partial i_3^*}{\partial \overline{H_{2,O}}} = F_{3,l;2,O}(\cdot) \left(\frac{1}{a_l}\right)$$

Hiring (pre shock):
$$\frac{\partial H_{1,N}^*}{\partial \overline{H_{2,O}}} = \left(\delta \underbrace{F_{2,I;2,O}(\cdot)}_{<0?} + \delta^2 F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{a_N}\right)$$
Hiring (mid shock):
$$\frac{\partial H_{2,N}^*}{\partial \overline{H_{2,O}}} = \left(\underbrace{F_{2,N;2,O}(\cdot)}_{<0?} + \delta F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{a_N}\right)$$

Hiring (post shock):
$$\frac{\partial H_{3,N}^*}{\partial \overline{H_{2,O}}} = F_{3,l;2,O}(\cdot) \left(\frac{1}{a_N}\right)$$

$$\Delta \text{ incumbents (mid):} \qquad \frac{\partial i_2^*}{\partial \overline{H_{2,O}}} = \left(\underbrace{F_{2,I;2,O}(\cdot)}_{<0?} + \delta F_{3,I;2,O}(\cdot)\right) \left(\frac{1}{a_I}\right)$$

$$\Delta$$
 incumbents (post): $\frac{\partial i_3^*}{\partial \overline{H}_{2,O}} = F_{3,l;2,O}(\cdot) \left(\frac{1}{a_l}\right)$

Ferrari, Kabatek, Morris Longer careers 8/36

Hiring (pre shock):
$$\frac{\partial H_{1,N}^*}{\partial \overline{H_{2,O}}} = \left(\delta\underbrace{F_{2,I;2,O}(\cdot)}_{<0?} + \delta^2\underbrace{F_{3,I;2,O}(\cdot)}_{>0?}\right) \left(\frac{1}{a_N}\right)$$
Hiring (mid shock):
$$\frac{\partial H_{2,N}^*}{\partial \overline{H_{2,O}}} = \left(\underbrace{F_{2,N;2,O}(\cdot)}_{<0?} + \delta\underbrace{F_{3,I;2,O}(\cdot)}_{>0?}\right) \left(\frac{1}{a_N}\right)$$
Hiring (post shock):
$$\frac{\partial H_{3,N}^*}{\partial \overline{H_{2,O}}} = \underbrace{F_{3,I;2,O}(\cdot)}_{>0?} \left(\frac{1}{a_N}\right)$$

$$\Delta \text{ incumbents (mid): } \frac{\partial i_2^*}{\partial \overline{H_{2,O}}} = \underbrace{\underbrace{F_{2,I;2,O}(\cdot)}_{<0?} + \delta\underbrace{F_{3,I;2,O}(\cdot)}_{>0?}}_{>0?}\right) \left(\frac{1}{a_I}\right)$$

$$\Delta \text{ incumbents (post): } \frac{\partial i_3^*}{\partial \overline{H_{2,O}}} = \underbrace{F_{3,I;2,O}(\cdot)}_{<0?} \left(\frac{1}{a_I}\right)$$

8/36

Hiring (pre shock):
$$\frac{\partial H_{1,N}^*}{\partial \overline{H_{2,O}}} = \left(\delta\underbrace{F_{2,I;2,O}(\cdot)}_{<0?} + \delta^2\underbrace{F_{3,I;2,O}(\cdot)}_{>0?}\right) \left(\frac{1}{a_N}\right) < 0?$$
 Hiring (mid shock):
$$\frac{\partial H_{2,N}^*}{\partial \overline{H_{2,O}}} = \left(\underbrace{F_{2,N;2,O}(\cdot)}_{<0?} + \delta\underbrace{F_{3,I;2,O}(\cdot)}_{>0?}\right) \left(\frac{1}{a_N}\right) < 0?$$
 Hiring (post shock):
$$\frac{\partial H_{3,N}^*}{\partial \overline{H_{2,O}}} = \underbrace{F_{3,I;2,O}(\cdot)}_{>0?} \left(\frac{1}{a_N}\right) > 0?$$

$$\Delta \text{ incumbents (mid): } \frac{\partial i_2^*}{\partial \overline{H_{2,O}}} = \underbrace{\left(\underbrace{F_{2,I;2,O}(\cdot)}_{<0?} + \delta\underbrace{F_{3,I;2,O}(\cdot)}_{>0?}\right) \left(\frac{1}{a_I}\right) < 0?}_{>0?}$$

$$\Delta \text{ incumbents (post): } \frac{\partial i_3^*}{\partial \overline{H_{2,O}}} = \underbrace{F_{3,I;2,O}(\cdot)}_{<0?} \left(\frac{1}{a_I}\right) > 0?}$$

A note on liquidity constraints

- Baseline model assumes that firms are not liquidity constrained
- If firm is liquidity constrained, a one unit increase in $\overline{H_{2,O}}$ will reduce hours worked by younger workers by $\approx \frac{w_O}{w_Y}$
- ⇒ demand for younger workers may fall, possibly across several periods (in addition to the dynamic pattern outlined above)

Background on Dutch pension system

Three pillars:

- Flat-rate PAYG public pension financed by contributions
 - Individuals start receiving at Statutory Retirement Age (SRA)
 - Employment contracts terminated at SRA unless explicitly renewed
 - Important due to very strong employment protection in Netherlands
 - Monthly payments: €1,226.60 for singles and €838.55 for partnered
- Firm- and sector-specific pension schemes
 - Can be claimed before the SRA with actuarial adjustment
 - Historically very generous
- Voluntary savings (relatively unimportant)

Key reforms

Two reforms, both provide cohort variation in retirement incentives:

- 1 2006 reform: Early retirement made less generous
 - Affected those born after 31 December 1949
 - Lindeboom & Montizaan (2020): Strong decrease in early retirement
- 2011/12 reforms: Gradual increases in the SRA from 65 to 66y4m
 - Atav, Jongen & Rabate (2021): Strong effects on old-age employment; effects concentrated between old and new SRA
 - Affected eligibility from 2013, a period when economy was growing

Data and sample construction

- Linked population register data from Statistics Netherlands
- Backbone: monthly tax-based records of all workers (2006–19)
 - Includes: earnings, hours worked, sector, and worker & firm IDs
- Identify affected firms and construct firm-level outcomes
 - E.g., monthly hiring rates, separation rates, promotion rates
- The IDs are also used to link information from other registers
 - E.g., demographics such as worker's gender, birth year & month
- **Sample:** those born in 01/1950–09/1953 & aged 63–66.99
 - Focus on small-to-medium firms (5–200 workers) with 1 establishment
 - Focus on those with strong labor-market and firm attachment
 - ullet Same employer at ages 63–64.5 and worked >20 hours per week
 - Selection criterion not affected by reform RD estimates
 - 19,505 unique individuals in 12,159 firms ▶ Descriptives

Ferrari, Kabatek, Morris Longer careers 12/36

How do firm outcomes evolve around the SRA?

- We start by estimating an event-study to show how firm/coworker outcomes evolve around a focal worker's SRA
- ullet Focus on a tight window around the SRA (event months -12 to +6)
- Estimate the following regressions:

$$y_{it} = \xi_i \left(\alpha + \sum_{\substack{j \\ j \neq \text{ref.}}} \gamma_j \mathbf{1}(\text{ev_age}_{it} = j) \right) + \text{age}_{it} + \tau_t + \epsilon_{it}$$
 (1)

- y_{it} : firm-level outcome (e.g., new hires per 100 workers) linked to focal worker i in month-year t
- age_{it} and τ_t : age-in-month and month-year fixed effects
- γ_j terms measure the effect of the focal worker's proximity to the SRA on y_{it} , relative to the reference period (event months -12 to -10)
- $\xi_i = \frac{10}{\text{firmsize}_i}$
- Standard errors clustered by firm

Event study: Focal workers' hours

Months until focal worker reaches retirement age

Event study: Focal workers' hours

Event study: Hiring rates

Event study: Hiring rates

Event study: Coworker separation rates

Event study: Mean coworker earnings growth

Event study: Coworker promotion rates

Event study: Coworker promotion rates

18 / 36

Event study: Coworker promotion rates

Event study: Coworker promotion rates (hours)

Event study: Coworker promotion rates (wages)

Empirical strategy: Effects of SRA increases

- Estimate effects of an SRA increment of 3 or 4 months
- Construct 4 cohort-pairs: (i) cohorts 1 & 2; (ii) 2 & 3; ... (iv) 4 & 5
- In each pair, earlier cohort is control group for latter Balance tests
- Estimate a stacked regression (Cengiz et al. 2019)

Key regression equation:

$$y_{ipt} = \xi_i \left(\sum_j \sum_p 1(\text{ev_age}_{ipt} = j) \times \mathsf{pair}_{ip} + \sum_j \beta_j 1(\text{ev_age}_{ipt} = j) \times \mathsf{treat}_{ip} \right) + \tau_t + \epsilon_{ipt}$$

- ullet ev_age_{ipt}: worker's age in qtrs, re-centered so $0=\mathsf{SRA}$ of ctrl group
- β_i coefficients: Treatment effects in event time
 - Coefficients for $j \ll 0$ used to assess parallel-trends
 - Then, we set a reference period (qtrs -9 to -3) to improve precision
- Study larger SRA increases by comparing non-adjacent cohorts

Ferrari, Kabatek, Morris Longer careers 21/36

Empirical strategy: Effects of SRA increases

- Estimate effects of an SRA increment of 3 or 4 months
- Construct 4 cohort-pairs: (i) cohorts 1 & 2; (ii) 2 & 3; ... (iv) 4 & 5
- In each pair, earlier cohort is control group for latter Balance tests
- Estimate a stacked regression (Cengiz et al. 2019)

Key regression equation:

$$y_{ipt} = \xi_i \left(\sum_j \sum_p 1(\mathsf{ev_age}_{ipt} = j) \times \mathsf{pair}_{ip} + \sum_j \beta_j 1(\mathsf{ev_age}_{ipt} = j) \times \mathsf{treat}_{ip} \right) + \tau_t + \epsilon_{ipt}$$

- \bullet ev_age_{ipt}: worker's age in qtrs, re-centered so 0 = SRA of ctrl group
- β_i coefficients: Treatment effects in event time
 - Coefficients for $j \ll 0$ used to assess parallel-trends
 - Then, we set a reference period (qtrs -9 to -3) to improve precision
- Study larger SRA increases by comparing non-adjacent cohorts

Ferrari, Kabatek, Morris Longer careers 21/36

Empirical strategy: Effects of SRA increases

- Estimate effects of an SRA increment of 3 or 4 months
- Construct 4 cohort-pairs: (i) cohorts 1 & 2; (ii) 2 & 3; ... (iv) 4 & 5
- In each pair, earlier cohort is control group for latter Balance tests
- Estimate a stacked regression (Cengiz et al. 2019)

Key regression equation:

$$y_{ipt} = \xi_i \left(\sum_j \sum_p 1(\text{ev_age}_{ipt} = j) \times \mathsf{pair}_{ip} + \sum_j \beta_j 1(\text{ev_age}_{ipt} = j) \times \mathsf{treat}_{ip} \right) + \tau_t + \epsilon_{ipt}$$

- \bullet $\text{ev_age}_{\textit{ipt}}$: worker's age in qtrs, re-centered so 0 = SRA of ctrl group
- β_i coefficients: Treatment effects in event time
 - Coefficients for $j \ll 0$ used to assess parallel-trends
 - Then, we set a reference period (qtrs -9 to -3) to improve precision
- Study larger SRA increases by comparing non-adjacent cohorts

Ferrari, Kabatek, Morris Longer careers 21/36

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 6-7 months

Figure: Effect of an SRA increase of **9–10 months**

Figure: Effect of an SRA increase of 13 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 6-7 months

Figure: Effect of an SRA increase of **9–10 months**

Figure: Effect of an SRA increase of 13 months

Figure: Effect of an SRA increase of 3-4 months

- No stat. significant effects across any of the four treatments
- Also no effects if we disaggregate coworkers by job contracts: (i) secure (very hard to dismiss) and (ii) insecure (easier to dismiss)
 - ⇒ likely small/no effects on both quits and layoffs

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 6–7 months

Figure: Effect of an SRA increase of **9–10 months**

Figure: Effect of an SRA increase of 13 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 6–7 months

Figure: Effect of an SRA increase of **9–10 months**

Figure: Effect of an SRA increase of 13 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 6-7 months

Figure: Effect of an SRA increase of **9–10 months**

Figure: Effect of an SRA increase of 13 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 3-4 months

Figure: Effect of an SRA increase of 6-7 months

Figure: Effect of an SRA increase of **9–10 months**

Figure: Effect of an SRA increase of 13 months

Robustness

- Effects on combined earnings growth of stable coworkers See
 - Qualitatively similar patterns; mostly explained by changes in hours
- ② Use different thresholds to define promotions based on earnings → See
 - \bullet Smaller but qualitatively similar results for $>\!\!20\%$ and $>\!\!40\%$ increases
 - Effects observed for monthly increases of €250+, €500+ & €750+
- - Twoway clustering by focal worker's firm and month-year of birth
 - Fixed denominator when defining rates of hiring, promotions etc
 - Alternative samples:
 - Allow firms to grow/shrink beyond 5-200 workers
 - Restrict firms to have single focal worker in each cohort-pair

29 / 36

Heterogeneity by relative earnings of workers: Hiring rates

Figure: Focal workers earning **above** the firm's median

30 / 36

Heterogeneity by relative earnings of workers: Hiring rates

Figure: Focal workers earning below the firm's median

Heterogeneity by relative earnings of workers: Promotions

Figure: Focal workers earning **above** the firm's median

Heterogeneity by relative earnings of workers: Promotions

Figure: Focal workers earning below the firm's median

Heterogeneity by worker/firm characteristics

- Proportionately larger effects on female coworkers and middle-aged/older coworkers
- Not much heterogeneity by firm characeteristics for hiring
- Effects on promotions driven by smaller/less productive firms, and firms that are growing in size

• Consider a firm with 10 workers (1 focal and 9 coworkers) — what is the impact of the focal worker delaying retirement by one month?

- Consider a firm with 10 workers (1 focal and 9 coworkers) what is the impact of the focal worker delaying retirement by one month?
 - We estimate a reduction in coworkers' average earnings of €65–125 (€780–1500 for a one-year delay)

- Consider a firm with 10 workers (1 focal and 9 coworkers) what is the impact of the focal worker delaying retirement by one month?
 - We estimate a reduction in coworkers' average earnings of €65–125 (€780–1500 for a one-year delay)
 - Aggregating across coworkers, decline offsets 16–32% of the increase in focal workers' earnings

- Consider a firm with 10 workers (1 focal and 9 coworkers) what is the impact of the focal worker delaying retirement by one month?
 - We estimate a reduction in coworkers' average earnings of €65–125 (€780–1500 for a one-year delay)
 - Aggregating across coworkers, decline offsets 16–32% of the increase in focal workers' earnings
- Effects concentrated among those who are delayed/denied promotions
- Large earnings losses of ~€5,000 among these individuals

Figure: SRA increase of 3–4 months

Figure: SRA increase of 3–4 months

Figure: SRA increase of 3–4 months

34 / 36

Figure: SRA increase of 3–4 months

Figure: SRA increase of 3–4 months

Figure: SRA increase of 3–4 months

Figure: SRA increase of 3–4 months

35 / 36

Figure: SRA increase of 3–4 months

Figure: SRA increase of 3–4 months

Figure: SRA increase of 3–4 months

Conclusion

- We show that firms significantly adjust their workforce when older workers delay retirement
- Mainly by delaying and decreasing hiring and coworker promotions
- At affected firms, most of the increase in hours/earnings is offset
- But reform still had positive net effects on workers' earnings/hours
- When thinking about the overall implications of our results, it's important to emphasize the following caveats:
 - 1 The decrease in hiring may mainly shift workers between firms
 - Reform may have boosted consumption
 - 3 We focus on small-to-medium firms in private sector

First order conditions

$$H_{1,N}: H_{1,N}^{*} \geq \left(F_{1,N}(\cdot) + \delta F_{2,I}(\cdot) + \delta^{2} F_{3,I}(\cdot) - \left(1 + \delta + \delta^{2}\right) w_{Y}\right) \left(\frac{1}{a_{N}}\right)$$

$$H_{2,N}: H_{2,N}^{*} \geq \left(F_{2,N}(\cdot) + \delta F_{3,I}(\cdot) - (1 + \delta)w_{Y}\right) \left(\frac{1}{a_{N}}\right)$$

$$H_{3,N}: H_{3,N}^{*} \geq \left(F_{3,N}(\cdot) - w_{Y}\right) \left(\frac{1}{a_{N}}\right)$$

$$i_{2}: \begin{cases} i_{2}^{*} \geq \left(F_{2,I}(\cdot) + \delta F_{3,I}(\cdot) - (1 + \delta)w_{Y}\right) \left(\frac{1}{a_{I}}\right), & \text{if } i_{2}^{*} \geq 0 \\ i_{2}^{*} = \left(F_{2,I}(\cdot) + \delta F_{3,I}(\cdot) - (1 + \delta)w_{Y} + T\right) \left(\frac{1}{a_{I}}\right), & \text{if } i_{2}^{*} < 0 \end{cases}$$

$$i_{3}: \begin{cases} i_{3}^{*} \geq \left(F_{3,I}(\cdot) - w_{Y}\right) \left(\frac{1}{a_{I}}\right), & \text{if } i_{3}^{*} \geq 0 \\ i_{3}^{*} = \left(F_{3,I}(\cdot) - w_{Y} + T\right) \left(\frac{1}{a_{I}}\right), & \text{if } i_{3}^{*} < 0 \end{cases}$$

∢ Back

RD estimates by year

Figure: Employment effects of SRA increase from 65.25 to 65.5

Descriptive statistics when focal worker is aged 64.5

	Mean	Std. Dev
Focal worker characteristics		
Age in years	64.5	0
Employed	100%	0
Monthly contractual work hours	152	31
Monthly contractual earnings	€3,306	€1,652
Contractual hourly wage	€21.6	€9.9
Share male	79.4%	
Firm/coworker characteristics		
Number of workers	46.0	40.7
Young workers (age 20-34)	11.2	12.1
Middle-age workers (age 35-49)	16.9	17.0
Older workers (age 50+)	17.8	17.2
Focal workers	2.3	1.9
Total monthly contractual wage costs	€144,340	€150,069
No. of coworker separations per month per 100 workers	1.08	2.51
No. of new hires per month per 100 workers	1.11	2.77
Average p.p. coworker earnings increase	0.87	4.15
Average p.p. coworker hours increase	0.85	5.73
Average p.p. coworker wage increase	0.46	4.21
No. of coworkers with 10% earnings increases per 100 workers	1.70	4.09
No. of coworkers with 10% hours increases per 100 workers	1.39	3.96
No. of coworkers with 10% wage increases per 100 workers	0.96	3.19
Percent change in combined earnings of stable coworkers	0.13	4.53
Percent change in combined hours of stable coworkers	0.11	6.44
Mean earnings of stable coworkers in $t-1$	€3,003	€951
Mean hours of stable coworkers in $t-1$	148	24
Combined earnings of stable coworkers in $t-1$	€127,357	€136,945
Combined hours of stable coworkers in $t-1$	6,032	5,915
Individuals (focal workers)	19,505	
Firms	12,159	

Ferrari, Kabatek, Morris

Testing for balance across treatment and control groups

	Difference: Treatment minus control	Control mea
Focal worker labor supply		
Focal worker hours per 100 workers	41 (25)	1,192
Focal worker earnings per 100 workers	653 (615)	25,867
Firm size, labor costs and job flows		
Number of workers	1.9 (1.0)	44.5
Total labor costs per month	7,191 (3,682)	138,145
Monthly hires per 100 workers	0.028 (0.025)	1.012
Monthly separations per 100 workers	0.008 (0.024)	1.052
Monthly growth in coworkers' earnings, hou	urs and wages	
Average earnings growth (p.p.)	-0.003 (0.032)	0.878
Average hours growth (p.p.)	0.034 (0.035)	0.879
Average wage growth (p.p.)	-0.013 (0.014)	0.477
Coworker promotions: Sustained 10% incre	ases per 100 workers	
Earnings	-0.036 (0.062)	1.732
Hours	-0.028 (0.058)	1.441
Wages	-0.012 (0.032)	0.989
Percent change in combined coworker earni	ings/hours	
Earnings	0.026 (0.031)	0.129
Hours	0.014 (0.020)	0.111

Distribution of treatment variable

Distribution of firm size

Combined earnings/hours

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	p.p. change in combined earnings			p.	p.p. change in combined hours			
	Trea	tment: SRA in	crease (mont	hs)	Treatment: SRA increase (months)			
	3 or 4	6 or 7	9 or 10	13	3 or 4	6 or 7	9 or 10	13
Quarter								
-2	0.103	-0.007	0.069	-0.054	-0.039	-0.145	-0.004	-0.025
	(0.050)	(0.058)	(0.073)	(880.0)	(0.068)	(0.076)	(0.070)	(0.113
-1	-0.077	0.006	-0.109	-0.075	-0.005	-0.068	-0.101	-0.047
	(0.045)	(0.051)	(0.069)	(0.087)	(0.055)	(0.057)	(0.062)	(0.094
0	-0.143**	-0.232**	-0.185	-0.165	-0.122	-0.131	-0.108	-0.116
	(0.045)	(0.055)	(0.072)	(0.092)	(0.046)	(0.064)	(0.068)	(0.103
1	0.101	-0.011	-0.162	0.004	0.045	-0.018	-0.072	-0.025
	(0.047)	(0.051)	(0.069)	(0.099)	(0.049)	(0.054)	(0.065)	(0.100
2	0.029	0.028	-0.072	-0.144	0.011	0.019	-0.024	-0.045
	(0.048)	(0.053)	(0.072)	(0.091)	(0.052)	(0.054)	(0.065)	(0.094
3	-0.054	-0.042	-0.010	-0.163	-0.013	0.005	0.029	-0.021
-	(0.048)	(0.054)	(0.073)	(0.087)	(0.054)	(0.057)	(0.064)	(0.097
4	-0.094	-0.154	-0.054	-0.095	-0.091	-0.106	0.041	-0.055
•	(0.052)	(0.058)	(0.079)	(0.080)	(0.055)	(0.063)	(0.071)	(0.095
						`		
Total effect	-0.407	-1.236	-1.571	-2.072	-0.645	-1.331	-0.720	-1.001
	(0.313)	(0.533)	(0.976)	(0.942)	(0.351)	(0.560)	(0.704)	(1.134
R-squared	0.034	0.034	0.034	0.035	0.187	0.186	0.186	0.182
Observations	1.466.233	1.094.089	739.273	367,129	1.466.233	1.094.089	739.273	367,12

◆ Back

Robustness: Promotion threshold

	(1)	(2) Promotions per	(3) r 100 workers, I	(4) pased on month	(5) Ily earnings incr	(6) ease of at least	(7)
	10%	20%	40% Treatment:	€250 SRA increase of	€500 f 3–4 months	€750	€1000
Quarter							
-2	0.129	0.096	0.036	0.100	0.054	0.021	0.004
	(0.054)	(0.038)	(0.026)	(0.047)	(0.029)	(0.022)	(0.015)
-1	-0.120	-0.062	-0.030	-0.136**	-0.038	-0.021	-0.011
	(0.051)	(0.038)	(0.026)	(0.043)	(0.026)	(0.019)	(0.014)
0	-0.297**	-0.220**	-0.107**	-0.171**	-0.103**	-0.048	-0.013
	(0.056)	(0.040)	(0.026)	(0.050)	(0.031)	(0.020)	(0.014)
1	0.023	0.050	0.034	0.022	0.018	-0.002	-0.020
	(0.059)	(0.043)	(0.027)	(0.052)	(0.032)	(0.022)	(0.016)
2	0.041	0.024	-0.028	0.057	0.022	-0.010	-0.008
	(0.059)	(0.041)	(0.027)	(0.052)	(0.031)	(0.021)	(0.016)
3	-0.137	-0.049	-0.011	-0.142*	-0.026	0.006	-0.012
	(0.058)	(0.043)	(0.030)	(0.049)	(0.030)	(0.021)	(0.015)
4	-0.063	-0.033	0.001	-0.019	-0.028	-0.023	-0.005
	(0.065)	(0.049)	(0.035)	(0.056)	(0.034)	(0.025)	(0.018)
Total effect	-1.274	-0.586	-0.313	-0.868	-0.301	-0.228	-0.197
	(0.476)	(0.345)	(0.244)	(0.402)	(0.241)	(0.169)	(0.120)
R-squared	0.010	0.005	0.003	0.024	0.009	0.006	0.004
Observations	1,466,233	1,466,233	1,466,233	1,466,233	1,466,233	1,466,233	1,466,23

Robustness

	(1)	(2)	(3)	(4)	(5)			
	Main	Twoway	Fixed	Relaxing	One focal worker			
	estimate	clustering	denominator	size restriction	per firm-pair			
	New hires per 100 workers							
Quarter								
-2	-0.055	-0.055	-0.047	-0.046	-0.031			
	(0.046)	(0.051)	(0.047)	(0.039)	(0.050)			
-1	-0.207**	-0.207**	-0.231**	-0.165**	-0.230**			
	(0.045)	(0.047)	(0.046)	(0.039)	(0.050)			
0	-0.017	-0.017	0.002	-0.022	-0.028			
	(0.047)	(0.045)	(0.048)	(0.041)	(0.052)			
1	0.113	0.113	0.143*	0.118*	0.111			
	(0.046)	(0.045)	(0.047)	(0.040)	(0.050)			
2	0.045	0.045	0.043	0.020	0.035			
	(0.046)	(0.051)	(0.048)	(0.041)	(0.051)			
3	-0.032	-0.032	-0.032	0.015	-0.044			
	(0.047)	(0.042)	(0.047)	(0.041)	(0.052)			
4	-0.010	-0.010	-0.036	-0.027	0.040			
	(0.053)	(0.043)	(0.055)	(0.044)	(0.058)			
Total effect	-0.491	-0.491	-0.474	-0.325	-0.439			
Total cirect	(0.339)	(0.343)	(0.353)	(0.321)	(0.388)			
	(0.555)	(0.515)	(0.555)	(0.521)	(0.500)			
R-squared	0.013	0.013	0.015	0.005	0.010			

∢ Back